The range of entrainment of the circadian behavioral rhythm was compared between two groups of Sprague-Dawley rats (each n = 10) exposed to daily cycles of rectangular light-dark alternation (LD) and sinusoidal fluctuations of light intensity (SINE), respectively. The maximum illuminance (20 lx), the minimum illuminance (0.01 lx), and the total amount of light exposure per cycle were the same under the two lighting conditions. The periods (Ts) of both lighting cycles were lengthened stepwise from 24 through 25, 26, 26.5, 27, 27. 5, and 28 h to 28.5 h in experiment 1 and were shortened stepwise from 24 through 23.5, 23, and 22.5 h to 22 h in experiment 2. Each T cycle lasted for 30 cycles. In experiment 1, 60% of rats under the LD condition entrained up to T = 28.5 h, whereas 50% of rats under the SINE condition entrained up to T = 28.5 h. In experiment 2, no animal under the LD condition entrained to T < 23.5 h, whereas 40% of rats under the SINE condition entrained down to T = 23 h and 20% of rats remained to entrain down to T = 22 h cycles. The phase angle of entrainment was systematically changed, depending on T under both conditions. These results suggest that the lower limit of entrainment is expanded under the SINE condition compared with the LD condition.