Feeding and locomotor activities of the Japanese catfish Plotosus japonicus under solitary condition were recorded to identify mechanisms controlling these behaviours. In the absence of food, the catfish showed nocturnal locomotor activity, but no feeding activity. Under ad libitum food conditions, both feeding and locomotor activities occurred during the dark period and were synchronized with light/dark (LD) cycles. Feeding activity lasted for 11-24 days when food was stopped after ad libitum food availability. Restricted food during the light phase produced both food-anticipatory and light-entrainable feeding activity. Furthermore, this condition produced weak food-anticipatory and light-entrainable locomotor activity. Under the light/light (LL) condition, restricted food produced food-anticipatory feeding and locomotor activities, suggesting that a food-entrainable oscillator controls both feeding and locomotor activities. However, under the LL condition, light-entrainable feeding and locomotor activities were not observed, suggesting that a light-entrainable oscillator controls both feeding and locomotor activities. During a restricted food schedule, LD cycle shifts resulted in disrupted synchronization of feeding activity onset in three of the four fish, but one fish showed synchronized feeding activity. These results suggest that the food- and the light-entrainable oscillator may control feeding and locomotor activities, respectively.