A theoretical debate about whether parasitoids should be time or egg limited now recognizes both as feasible, and interest has turned to determining the circumstances under which each might arise in the field, and their implications for parasitoid behaviour and evolution. Egg loads of parasitoids sampled from the field are predicted to show a negative response to host availability, but empirical support for this relationship is scarce. We measured how a parasitoid's egg load responded to seasonal fluctuations in host population density and recorded the predicted correlation. In early summer, parasitoids were at high risk of time limitation due to low host availability, and in late summer, their offspring were at greater risk of egg limitation due to high host availability. Despite clear seasonal changes in selection pressures on egg load and lifespan, the parasitoid showed no evidence of seasonal variation in its reproductive strategy. We made minor modifications to a previously published model to explore the effects of seasonal variation in host availability on optimal investments in eggs and lifespan and obtained several new results. In particular, under circumstances analogous to some of those observed in our field study, temporal stochasticity in reproductive opportunities can cause investments in eggs to increase, rather than decrease as previously predicted. Our model results helped to explain the parasitoid's lack of a seasonally varying reproductive strategy. Understanding the evolution of parasitoid egg load would benefit from a shift of research emphasis from purely stochastic variation in parasitoid reproductive opportunities to greater consideration of host dynamics.