The life-long addition of new neurons has been documented in many regions of the vertebrate and invertebrate brain, including the hippocampus of mammals (Altman and Das, 1965; Eriksson et al., 1998; Jacobs et al., 2000), song control nuclei of birds (Alvarez-Buylla et al., 1990), and olfactory pathway of rodents (Lois and Alvarez-Buylla, 1994), insects (Cayre et al., 1996) and crustaceans (Harzsch and Dawirs, 1996; Sandeman et al., 1998; Harzsch et al., 1999; Schmidt, 2001). The possibility of persistent neurogenesis in the neocortex of primates is also being widely discussed (Gould et al., 1999; Kornack and Rakic, 2001). In these systems, an effort is underway to understand the regulatory mechanisms that control the timing and rate of neurogenesis. Hormonal cycles (Rasika et al., 1994; Harrison et al., 2001), serotonin (Gould, 1999; Brezun and Daszuta, 2000; Beltz et al., 2001), physical activity (Van Praag et al., 1999) and living conditions (Kemperman and Gage, 1999; Sandeman and Sandeman, 2000) influence the rate of neuronal proliferation and survival in a variety of organisms, suggesting that mechanisms controlling life-long neurogenesis are conserved across a range of vertebrate and invertebrate species. The present article extends these findings by demonstrating circadian control of neurogenesis. Data show a diurnal rhythm of neurogenesis among the olfactory projection neurons in the crustacean brain, with peak proliferation during the hours surrounding dusk, the most active period for lobsters. These data raise the possibility that light-controlled rhythms are a primary regulator of neuronal proliferation, and that previously-demonstrated hormonal and activity-driven influences over neurogenesis may be secondary events in a complex circadian control pathway.