While horseshoe crabs Limulus polyphemus from regions with two daily tides express endogenous circatidal (~ 12.4 h) activity rhythms, much less is known about locomotor rhythm expression in horseshoe crabs from other tidal regimes. This study investigated whether horseshoe crabs (1) always express activity rhythms consistent with their natural tides, and (2) can alter activity rhythm expression in response to novel tide cycles. Activity rhythms of animals from environments with two daily tides (Gulf of Maine, 43°6′ N/70°52′ W, and Massachusetts, 41°32′ N/70°40′W), one dominant daily tide (Apalachee Bay, Florida, 29°58′ N/84°20′ W), and microtides (Indian River Lagoon, Florida, 28°5′ N/80°35′ W) were recorded in 2011–2013 during three artificial tide conditions: no tides, a 12.4 h tidal cycle, and a 24.8 h tidal cycle. Interestingly, L. polyphemus from the microtidal site (n = 7) appeared “plastic” in their responses; they were able to express both bimodal and unimodal rhythms in response to different tide cycles. In contrast, the other two populations exhibited more fixed responses: regardless of the tides they were exposed to, animals from areas with one dominant daily tide (n = 18) consistently expressed unimodal rhythms, while those from areas with two daily tides (n = 28) generally expressed bimodal rhythms. Rhythms expressed by L. polyphemus thus appear to be a function of endogenous clocks, the tidal cues to which animals are exposed, and tidal cues that animals experience throughout ontogeny.