“…The desire to endow important classes of C * -algebras generated by partial isometries with a structure of a more general crossed product led to the concept of a partial group action, introduced in [19], [27], [22], [23]. The new structure permitted to obtain relevant results on K-theory, ideal structure and representations of the algebras under consideration, as well as to treat amenability questions, especially amenability of C * -algebraic bundles (also called Fell bundles), using both partial actions and the related concept of a partial representation.…”