ObjectiveThis study aims to explore the common genetic basis between respiratory diseases and to identify shared molecular and biological mechanisms.MethodsThis genome-wide pleiotropic association study uses multiple statistical methods to systematically analyse the shared genetic basis between five respiratory diseases (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, lung cancer and snoring) using the largest publicly available genome wide association studies summary statistics. The missions of this study are to evaluate global and local genetic correlations, to identify pleiotropic loci, to elucidate biological pathways at the multiomics level and to explore causal relationships between respiratory diseases. Data were collected from 27 November 2022 to 30 March 2023 and analysed from 14 April 2023 to 13 July 2023.Main outcomes and measuresThe primary outcomes are shared genetic loci, pleiotropic genes, biological pathways and estimates of genetic correlations and causal effects.ResultsSignificant genetic correlations were found for 10 paired traits in 5 respiratory diseases. Cross-Phenotype Association identified 12 400 significant potential pleiotropic single-nucleotide polymorphism at 156 independent pleiotropic loci. In addition, multitrait colocalisation analysis identified 15 colocalised loci and a subset of colocalised traits. Gene-based analyses identified 432 potential pleiotropic genes and were further validated at the transcriptome and protein levels. Both pathway enrichment and single-cell enrichment analyses supported the role of the immune system in respiratory diseases. Additionally, five pairs of respiratory diseases have a causal relationship.Conclusions and relevanceThis study reveals the common genetic basis and pleiotropic genes among respiratory diseases. It provides strong evidence for further therapeutic strategies and risk prediction for the phenomenon of respiratory disease comorbidity.