With the introduction of non-planar CMOS technologies in commercial designs, the effects of the range and precision allowed in a technology is an important. The limited range and precision (i.e. granularity) in a technology, and consequently, in a standard cell design, may result in significant penalties in the power and delay performance in a design. In this work, the impact of the range and precision is examined by providing a new framework for estimating the power suboptimality incurred by a design relative to a given library. Methods that predict the suboptimality well, both qualitatively and quantitatively, and the implications on standard cell library design are explored. While no other methods for estimating suboptimality are known, compared to a method derived from literature, our method provides a nearly 2x better estimate for v th assignment and 10x improvement for gate sizing.