Compared to conventional fossil-fueled vehicles, electric vehicles offer several environmental benefits. However, even electric vehicles are not completely environmentally friendly because many of their parts are not recycled today. These parts, especially the magnets that power them, end up in landfills at the end of the vehicle’s life cycle. This study aims to evaluate the environmental impacts of recycled (NdDy)FeB permanent magnets obtained by means of a novel hydrogen-decrepitation-based, magnet-to-magnet recycling technique. The Life Cycle Assessment methodology was used to compare, on a like-to-like basis, recycled and virgin permanent magnets. The core data provided by an industry partner served as the foundation for modelling the recycling process. Three different functional units were investigated based on three parameters, namely the magnet mass, magnetization coercivity, and energy product. Results revealed that the recycled magnet outperformed the virgin magnet in most impact categories. In terms of carbon footprint, recycling permanent magnets through hydrogen decrepitation would allow for an 18─33% reduction with respect to their production from virgin materials, depending on the assumed functional unit.