In this study, an optimal multi-band microstrip fed metasurface antenna is designed. Three by three nonuniform circular radiating cross slotted elements make up the antenna's metasurface. The metasurface is analyzed using characteristic mode analysis (CMA), and the Modal Significance (MS), Characteristic angle (CA), and Eigen Value (EV) curves are utilized to optimize the antenna's performance. In addition, surface currents are examined for the metasurface and patch using CMA, and the design incorporates microstrip feeding to excite the targeted frequency bands. With its resonance frequencies of 5.4 GHz, 8.9 GHz, 12.8 GHz, 15.9 GHz, and 19.8-31.58 GHz, the developed antenna has potential uses in 5G and wireless communications. The suggested antenna achieves a gain of 10.05 on average. The prototyped model conformability analysis of the antenna is also performed, and good matching with simulation results is found.