To test the hypothesis that a mobilization of endothelial progenitor cells (EPCs) occurs after acute cerebrovascular diseases, we evaluated the number of EPCs in the process of acute stroke. A total of 203 individuals were examined, including 100 patients with ischemic strokes, 36 patients with hemorrhagic strokes and 67 healthy controls. Ninety-eight patients were observed at days 1, 7, 14 and 28 after acute stroke. Circulating EPCs were defined by the surface markers CD133/KDR and analyzed by flow cytometry. Serum high sensitivity C-reactive protein (hs-CRP) concentrations were determined by particle-enhanced immunonephelometry using the N high sensitivity CRP Reagent. Patients with acute stroke had lower numbers of EPCs (0.037±0.001/100 peripheral blood mononuclear cells (PMNCs) vs. 0.06±0.002/100 PMNCs, Po0.05) and higher levels of serum hs-CRP (1.99 vs. 0.03 mg per 100 ml, Po0.05) than control subjects after adjusting for age, sex, body mass index (BMI) and blood pressure. There were no differences in EPCs counts or serum hs-CRP levels between patients with ischemic and hemorrhagic stroke. In univariate analyses, BMI, age, systolic blood pressure (SBP), diastolic blood pressure, low-density lipoprotein (LDL), total cholesterol (T-cho), blood glucose and hs-CRP (Po0.001) were inversely correlated with EPCs counts. Multivariate analyses showed SBP and total cholesterol as independent predictors of EPCs levels. The number of EPCs gradually increased at day 7 after acute onset, remained elevated at day 14; and returned to baseline by day 28. Our results suggest a possible contribution of circulating EPCs in acute stroke. SBP and total cholesterol are independent factors of reduced EPCs numbers. A transient early increment of EPCs may result from the mobilization of EPCs in response to stroke stress.