Background: Emerging evidence has revealed that circular RNAs (circRNAs) participated in hepatocellular carcinoma (HCC) development. However, the roles of most circRNAs have not been studied. Methods: CircZNF609, miR-342-3p and RAP2C expressions were assessed by qPCR or Western blot. Loss-of-function experiments were performed using si-circZNF609 transfection, followed by CCK-8 assay, flow cytometry, wound healing assay and transwell assay. Informatic tools and rescue experiments were carried out to investigate the underlying mechanisms. Results: We showed that circZNF609 was overexpressed in HCC tissues and cells, as well as associated with poor clinical characteristics. Depletion of circZNF609 restrained HCC cell viability, migration and invasion while enhanced cell apoptosis. As to mechanism, miR-342-3p was sponged by circZNF609, and RAP2C was targeted by miR-342-3p. The effects on HCC cells induced by si-circZNF609 could be reversed by miR-342-3p inhibitor or RAP2C. In vivo, circZNF609 knockdown inhibited tumorigenesis of HCC mice, confirming the findings in vitro. Conclusion: CircZNF609 was highly expressed in HCC tissues and driven HCC progression by sponging miR-342-3p and upregulating RAP2C. This study may provide new potential therapeutic targets for HCC treatment.