In Chile, expansion of avocado production has resulted in many orchards established in marginal soils that are poorly drained and have high soil water-to-air ratios when soil moisture is at field capacity. However, avocado trees are sensitive to poor soil aeration. A study was conducted to determine the effects of different soil waterto-air ratios (W/A) on biomass and nutrient content of avocado trees. Two-yearold avocado trees were grown for 2 seasons in containers in soils, with different W/A, collected from different avocado growing regions of Chile. There were five treatments corresponding to each of the five soils. At field capacity, the two-season average W/A was 1.7, 1.3, 0.6, 0.4 or 0.3 for treatments T1, T2, T3, T4, or T5, respectively. The same amount of fertilizer was applied to each soil. Mineral element concentrations and total mineral element contents in leaves, shoots, wood and roots were determined for each tree in each treatment at the end of the experimental period. Shoot and root fresh and dry weights, leaf area and leaf retention were also determined. Although all treatments showed non-limiting soil oxygen conditions for avocado root growth, trees in soils with lower W/A had greater shoot and root dry weights and longer autumn leaf retention. Macro-and micronutrient concentrations in any plant tissue were not related to soil W/A. However, total tissue contents of N, P, K, Ca, Mg, C, N and B in roots and whole plants were highest in treatments with lower soil W/A. The results indicate that soil W/A significantly affects growth and mineral nutrition of avocado trees and should be considered for avocado site selection and management.Abbreviations: W/A = soil water-to-air ratio; q = volumetric soil water content; ODR = oxygen diffusion rate; BD = bulk density; FC = field capacity.