ClarifyGPT: A Framework for Enhancing LLM-Based Code Generation via Requirements Clarification
Fangwen Mu,
Lin Shi,
Song Wang
et al.
Abstract:Large Language Models (LLMs), such as ChatGPT, have demonstrated impressive capabilities in automatically generating code from provided natural language requirements. However, in real-world practice, it is inevitable that the requirements written by users might be ambiguous or insufficient. Current LLMs will directly generate programs according to those unclear requirements, regardless of interactive clarification, which will likely deviate from the original user intents. To bridge that gap, we introduce a nov… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.