“…Moreover, (4.26) T 1 [P, P + ] = Tp + (D) if [P, P + ] ∈ Pic + (O F ) 2 ; Tp − (D) otherwise.Proof. In light of (4.18) and Remarks 4.6 and 4.8, the bijectivity of Υ un : Λ un 1 [P, P + ] → T 1 [P, P + ] is just a restatement of[64, Lemma 4.7].To prove (4.26), let us fix a principally polarizable abelian surface X 0 /F p with π2 X0 = p and put O 0 := End(X 0 ). Then O 0 ∈ Tp + (D) by Corollary 3.3.7, and P(X) ≃ (O F , O F,+ ) by Corollary 4.3.…”