2023
DOI: 10.1609/aaai.v37i1.25171
|View full text |Cite
|
Sign up to set email alerts
|

ClassFormer: Exploring Class-Aware Dependency with Transformer for Medical Image Segmentation

Abstract: Vision Transformers have recently shown impressive performances on medical image segmentation. Despite their strong capability of modeling long-range dependencies, the current methods still give rise to two main concerns in a class-level perspective: (1) intra-class problem: the existing methods lacked in extracting class-specific correspondences of different pixels, which may lead to poor object coverage and/or boundary prediction; (2) inter-class problem: the existing methods failed to model explicit categor… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 15 publications
0
0
0
Order By: Relevance