The data regarding the prognosis of cutaneous Kaposi sarcoma (KS) was limited. The current study aimed to explore the risk factors and develop a predictive model for the prognosis of cutaneous KS patients. Data were extracted from Surveillance, Epidemiology, and End Results database from 2000 to 2018 and randomly divided into training and validation cohort. The Kaplan–Meier analysis, cumulative incidence function based on the competing risk model and Fine–Gray multivariable regression model was used to identify the prognostic factors and then construct a 5-, 10-, and 15-year KS-specific death (KSSD) nomogram for patients. The concordance index (C-index), area under the curve (AUC) of operating characteristics and calibration plots were used to evaluate the performance of the model. The clinical utility of the model was measured by decision curve analysis (DCA). In 2257 cutaneous KS patients identified from database, the overall median survival time was about 13 years. Radiotherapy (p = 0.013) and surgery (p < 0.001) could lower the KSSD, while chemotherapy (p = 0.042) and surgery (p < 0.001) could increase the overall survival (OS) of patients with metastatic and localized lesions, respectively. Race, number of lesions, surgery, extent of disease, year of diagnosis and age were identified as risk factors associated with cutaneous KS-specific survival. Performance of the nomogram was validated by calibration and discrimination, with C‐index values of 0.709 and AUC for 5-, 10-, and 15-year-KSSD of 0.739, 0.728 and 0.725 respectively. DCA indicated that the nomogram had good net benefits in clinical scenarios. Using a competing-risk model, this study firstly identified the prognostic factors, and constructed a validated nomogram to provide individualized assessment and reliable prognostic prediction for cutaneous KS patients.