Abstract:This paper considers a first-order autoregressive model with skew-normal innovations from a parametric point of view. We develop an essential theory for computing the maximum likelihood estimation of model parameters via an Expectation-Maximization (EM) algorithm. Also, a Bayesian method is proposed to estimate the unknown parameters of the model. The efficiency and applicability of the proposed model are assessed via a simulation study and a real-world example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.