A basic question in neuroscience is how different forms of learning are related. To further address that question, we examined whether gill withdrawal in Aplysia, which has already been studied extensively for neuronal mechanisms contributing to habituation, sensitization, and classical conditioning, also undergoes operant conditioning. Animals were run in pairs. During the initial training period, the contingent (experimental) animal received a siphon shock each time its gill relaxed below a criterion level, and the yoked control animal received a shock whenever the experimental animal did, regardless of its own gill position. This was followed by an extinction period when there was no shock, a retraining period when both animals were contingent, and another extinction period. The experimental animals spent more time with their gills contracted above the criterion level than did the control animals during each period, demonstrating operant conditioning. The type of gill behavior modified by learning shifted over time: the experimental animals had a larger increase in the frequency and duration of spontaneous contractions than did the control animals during the first but not the last extinction period and a larger increase in the level of tonic contraction during the last but not the first extinction period. Because many of the neurons controlling spontaneous and tonic gill withdrawal have already been identified, it should now be possible to examine the cellular locus and mechanism of operant conditioning and compare them with those for other forms of learning of the same behavior.