We report an experimental demonstration of a time transfer and distant clock synchronization scheme based on what we have labeled as a ghost frequency comb, observed from the nonlocal correlation measurements of a laser beam. Unlike a conventional frequency comb, the laser beam used in this work does not consist of a pulse train but instead it is in a continuous-wave operation. The laser beam, consisting of half a million longitudinal cavity modes from a fiber ring laser, is split into two beams, each sent to a distant observer. In their local measurements, both observers observe constant intensity with no pulse structure present. Surprisingly, a pulse train of comb-like, ultra-narrow peaks is observed from their nonlocal correlation function measurement. This observation makes an important contribution to the field of precision spectroscopy, as we show in optical correlation-based nonlocal timing and positioning.