The dynamic performance of composite flexible multi-body system under the simultaneous action of thermal fields and driving constraint is analyzed. Based on strain-displacement relation of the Mindlin plate theory which includes transverse shear deformation, and considering thermal effect, variation equations of laminated plate are derived by the principle of virtual work. The finite element method is used for discretization. According to kinematics constraint relation, dynamic equations for spatial slider-crank system are established. Simulation results show that spatial deformation (torsion deformation) appears in the multi-layered composite slider-crank mechanism which is simulated with planar motions. Furthermore, the influence of coupling between thermal expansion and flexible deformations of non-symmetrical composite plates on the large overall motion under the uniform temperature field is investigated. Finally, significant change in constraint force due to the spatial deformation is shown.