2013
DOI: 10.1090/s0002-9939-2013-11685-0
|View full text |Cite
|
Sign up to set email alerts
|

Classical operators on weighted Banach spaces of entire functions

Abstract: Abstract. We study the operators of differentiation and of integration and the Hardy operator on weighted Banach spaces of entire functions. We estimate the norm of the operators, study the spectrum, and analyze when they are surjective, power bounded, hypercyclic and (uniformly) mean ergodic.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
20
0
1

Year Published

2015
2015
2023
2023

Publication Types

Select...
5
1

Relationship

3
3

Authors

Journals

citations
Cited by 18 publications
(21 citation statements)
references
References 23 publications
0
20
0
1
Order By: Relevance
“…Es dóna especial atenció a pesos de tipus exponencial. El contingut d'aquest capítol s'ha publicat en [17] i en [15].…”
Section: En El Caso De Operadores Diferenciales φ(D)unclassified
See 3 more Smart Citations
“…Es dóna especial atenció a pesos de tipus exponencial. El contingut d'aquest capítol s'ha publicat en [17] i en [15].…”
Section: En El Caso De Operadores Diferenciales φ(D)unclassified
“…We omit the proofs here, since they are included in the last sections. This content is published by Bonet, Fernández and the author in [17]. We do not know if the differentiation operator is mean ergodic on the space H 0 1 (C).…”
Section: Differential Operatorsmentioning
confidence: 99%
See 2 more Smart Citations
“…Proof By the proof of [, Lemma 2.1], it is enough to show that J:Huφ(boldC)Hwφ(boldC) is continuous. Fix fHuφ(boldC) with fuφ1.…”
Section: Volterra Operatorsmentioning
confidence: 99%