The optimal transportation theory was successfully applied to different tasks on geometric domains as images and triangle meshes. In these applications the transport problem is defined on a Riemannian manifold with geodesic distance d(x, y). Usually, the cost function used is the geodesic distance d or the squared geodesic distance d 2. These choices result in the 1-Wasserstein distance, also known as the earth mover's distance (EMD), or the 2-Wasserstein distance. The entropy regularized optimal transport problem can be solved using the Bregman projection algorithm. This algorithm can be implemented using only matrix multiplications of matrix exp(-\bfitC /\varepsi) (pointwise exponent) and pointwise vector multiplications, where \bfitC is a cost matrix, and \varepsi is the regularization parameter. In this paper, we obtain a low-rank decomposition of this matrix and exploit it to accelerate the Bregman projection algorithm. Our low-rank decomposition is based on the semidiscrete approximation of the cost function, which is valid for a large family of cost functions, including d p (x, y), where p \geq 1. Our method requires the calculation of only a small portion of the distances.