Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only $${{{{{{{\mathcal{O}}}}}}}}(\log (n))$$ O ( log ( n ) ) data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require $${{{{{{{\mathcal{O}}}}}}}}({n}^{c})$$ O ( n c ) data for a large constant c. Furthermore, the training and prediction time of the proposed ML model scale as $${{{{{{{\mathcal{O}}}}}}}}(n\log n)$$ O ( n log n ) in the number of qubits n. Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset.
Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only $${{{{{{{\mathcal{O}}}}}}}}(\log (n))$$ O ( log ( n ) ) data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require $${{{{{{{\mathcal{O}}}}}}}}({n}^{c})$$ O ( n c ) data for a large constant c. Furthermore, the training and prediction time of the proposed ML model scale as $${{{{{{{\mathcal{O}}}}}}}}(n\log n)$$ O ( n log n ) in the number of qubits n. Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset.
Efficiently estimating fermionic Hamiltonian expectation values is vital for simulating various physical systems. Classical shadow (CS) algorithms offer a solution by reducing the number of quantum state copies needed, but noise in quantum devices poses challenges. We propose an error-mitigated CS algorithm assuming gate-independent, time-stationary, and Markovian (GTM) noise. For n-qubit systems, our algorithm, which employs the easily prepared initial state $$\left\vert {0}^{n}\right\rangle \,\left\langle {0}^{n}\right\vert$$ 0 n 0 n assumed to be noiseless, efficiently estimates k-RDMs with $$\widetilde{{{{\mathcal{O}}}}}(k{n}^{k})$$ O ̃ ( k n k ) state copies and $$\widetilde{{{{\mathcal{O}}}}}(\sqrt{n})$$ O ̃ ( n ) calibration measurements for GTM noise with constant fidelities. We show that our algorithm is robust against noise types like depolarizing, damping, and X-rotation noise with constant strengths, showing scalings akin to prior CS algorithms for fermions but with better noise resilience. Numerical simulations confirm our algorithm’s efficacy in noisy settings, suggesting its viability for near-term quantum devices.
Estimating nonlinear functions of quantum states, such as the moment $${{{\rm{tr}}}}({\rho }^{m})$$ tr ( ρ m ) , is of fundamental and practical interest in quantum science and technology. Here we show a quantum-classical hybrid framework to measure them, where the quantum part is constituted by the generalized swap test, and the classical part is realized by postprocessing the result from randomized measurements. This hybrid framework utilizes the partial coherent power of the intermediate-scale quantum processor and, at the same time, dramatically reduces the number of quantum measurements and the cost of classical postprocessing. We demonstrate the advantage of our framework in the tasks of state-moment estimation and quantum error mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.