Recognizing and authenticating wheat varieties is critical for quality evaluation in the grain supply chain, particularly for methods for seed inspection. Recognition and verification of grains are carried out manually through direct visual examination. Automatic categorization techniques based on machine learning and computer vision offered fast and high-throughput solutions. Even yet, categorization remains a complicated process at the varietal level. The paper utilized machine learning approaches for classifying wheat seeds. The seed classification is performed based on 7 physical features: area of wheat, perimeter of wheat, compactness, length of the kernel, width of the kernel, asymmetry coefficient, and kernel groove length. The dataset is collected from the UCI library and has 210 occurrences of wheat kernels. The dataset contains kernels from three wheat varieties Kama, Rosa, and Canadian, with 70 components chosen at random for the experiment. In the first phase, K-nearest neighbor, classification and regression tree, and Gaussian Naïve Bayes algorithms are implemented for classification. The results of these algorithms are compared with the ensemble approach of machine learning. The results reveal that accuracies calculated for KNN, decision, and Naïve Bayes classifiers are 92%, 94%, and 92%, respectively. The highest accuracy of 95% is achieved through the ensemble classifier in which decision is made based on hard voting.