Intelligent transportation systems (ITSs) have witnessed a rising interest from researchers because of their promising features. These features include lane change assistance, infotainment, and collision avoidance, among others. To effectively operate ITSs for these functions, there is a need for edge computing. One can install edge computing servers at the roadside units (RSUs). There must be seamless communication between the edge servers and the cars. Additionally, there will be some cars that experience higher delays and thus, are not preferable because they will highly degrade the performance. Therefore, in this work, we consider a vehicular network scenario and define a cost function that takes into account the latency that is determined by the car's computing frequency, association, and resource allocation while considering fairness constraints. Our cost function is to minimize the total latency (i.e., both local computing latency and transmission latency). The cost of the optimization problem is minimized by optimizing the car's local frequency allocation, resource allocation, and association. The problem is separable, therefore, we first compute the local frequencies of the cars using a convex optimizer. Then, due to the NP-hard nature of the remaining formulated problem (i.e., joint association and resource allocation), we decompose the main problem into two sub-problems: (a) resource allocation and (b) association. Then, we propose an iterative solution. Finally, we provide numerical results for validating the proposed solution.