Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
From the various perspectives of machine learning (ML) and the multiple models used in this discipline, there is an approach aimed at training models for the early detection (ED) of anomalies. The early detection of anomalies is crucial in multiple areas of knowledge since identifying and classifying them allows for early decision making and provides a better response to mitigate the negative effects caused by late detection in any system. This article presents a literature review to examine which machine learning models (MLMs) operate with a focus on ED in a multidisciplinary manner and, specifically, how these models work in the field of fraud detection. A variety of models were found, including Logistic Regression (LR), Support Vector Machines (SVMs), decision trees (DTs), Random Forests (RFs), naive Bayesian classifier (NB), K-Nearest Neighbors (KNNs), artificial neural networks (ANNs), and Extreme Gradient Boosting (XGB), among others. It was identified that MLMs operate as isolated models, categorized in this article as Single Base Models (SBMs) and Stacking Ensemble Models (SEMs). It was identified that MLMs for ED in multiple areas under SBMs’ and SEMs’ implementation achieved accuracies greater than 80% and 90%, respectively. In fraud detection, accuracies greater than 90% were reported by the authors. The article concludes that MLMs for ED in multiple applications, including fraud, offer a viable way to identify and classify anomalies robustly, with a high degree of accuracy and precision. MLMs for ED in fraud are useful as they can quickly process large amounts of data to detect and classify suspicious transactions or activities, helping to prevent financial losses.
From the various perspectives of machine learning (ML) and the multiple models used in this discipline, there is an approach aimed at training models for the early detection (ED) of anomalies. The early detection of anomalies is crucial in multiple areas of knowledge since identifying and classifying them allows for early decision making and provides a better response to mitigate the negative effects caused by late detection in any system. This article presents a literature review to examine which machine learning models (MLMs) operate with a focus on ED in a multidisciplinary manner and, specifically, how these models work in the field of fraud detection. A variety of models were found, including Logistic Regression (LR), Support Vector Machines (SVMs), decision trees (DTs), Random Forests (RFs), naive Bayesian classifier (NB), K-Nearest Neighbors (KNNs), artificial neural networks (ANNs), and Extreme Gradient Boosting (XGB), among others. It was identified that MLMs operate as isolated models, categorized in this article as Single Base Models (SBMs) and Stacking Ensemble Models (SEMs). It was identified that MLMs for ED in multiple areas under SBMs’ and SEMs’ implementation achieved accuracies greater than 80% and 90%, respectively. In fraud detection, accuracies greater than 90% were reported by the authors. The article concludes that MLMs for ED in multiple applications, including fraud, offer a viable way to identify and classify anomalies robustly, with a high degree of accuracy and precision. MLMs for ED in fraud are useful as they can quickly process large amounts of data to detect and classify suspicious transactions or activities, helping to prevent financial losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.