1999
DOI: 10.1016/s0169-7439(99)00035-0
|View full text |Cite
|
Sign up to set email alerts
|

Classification of analytical images with radial basis function networks and forward selection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
1

Year Published

2001
2001
2009
2009

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 22 publications
(5 citation statements)
references
References 8 publications
0
4
0
1
Order By: Relevance
“…The topology and learning parameters of RBFNs are easy to optimize [4,5]. Although recently, RBFNs have been successfully applied in many multivariate calibration [6], classification [7] and QSPR studies [8,9], the present study is among the limited number of its applications in QSAR studies.…”
Section: Introductionmentioning
confidence: 98%
“…The topology and learning parameters of RBFNs are easy to optimize [4,5]. Although recently, RBFNs have been successfully applied in many multivariate calibration [6], classification [7] and QSPR studies [8,9], the present study is among the limited number of its applications in QSAR studies.…”
Section: Introductionmentioning
confidence: 98%
“…Characteristic absorbency values of infrared spectrum were allocated to hidden layer by input layer. The nerve ceil basis function (gauss function) of hidden layer carry out nonlinear operation on input variable, nerve ceils of output layer linear weighted array the output of hidden layer, produce one classification information which can be used to identify the quality of extraction liquid [7,8 ] .…”
Section: The Application Of Infra-red Spectrum Analysis In This Systemmentioning
confidence: 99%
“…Encontrar o melhor conjunto, por "tentativa e erro" é praticamente inviável, visto que existem 2 n -1 sub-conjuntos distintos em um conjunto com n RBFs, de modo que geralmente utiliza-se de métodos heurísticos para realizar essa tarefa. Um dos tipos mais simples dentre os métodos heurísticos de otimização é a "Forward Selection" 25,27 . O modelo de otimização por "forward selection" baseia-se em iniciar um sub-conjunto vazio de RBFs e ir adicionando RBFs de modo a diminuir (minimizar) o somatório do erro quadrático ou outro critério de minimização como a validação cruzada generalizada (por exemplo).…”
Section: Figura 11 Perfil Dos Tipos De Rbf Mais Utilizados: Gaussianunclassified