2010
DOI: 10.1117/12.853286
|View full text |Cite
|
Sign up to set email alerts
|

Classification of cast iron based on graphite grain morphology using neural network approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
7
0
3

Year Published

2011
2011
2020
2020

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 12 publications
(10 citation statements)
references
References 3 publications
0
7
0
3
Order By: Relevance
“…Dado que, no trabalho de GOMES e PACIONIRK [18], o percentual de acerto para os ferros fundidos foi cerca de a 90%. Já os resultados de classificações corretas apresentados no trabalho de PATTAN et al [19], oscilaram em uma faixa entre 73% e 87%.…”
Section: Resultados Do Teste Para Uma Amostra Todaunclassified
See 2 more Smart Citations
“…Dado que, no trabalho de GOMES e PACIONIRK [18], o percentual de acerto para os ferros fundidos foi cerca de a 90%. Já os resultados de classificações corretas apresentados no trabalho de PATTAN et al [19], oscilaram em uma faixa entre 73% e 87%.…”
Section: Resultados Do Teste Para Uma Amostra Todaunclassified
“…Dentre estes, vale destacar os trabalhos de GOMES e PACIONIRK [18] e PATTAN et al [19]. PATTAN et al [19] realizaram a classificação do ferro fundido, com base na morfologia dos grãos de grafita usando uma abordagem com redes neurais.…”
Section: Figuraunclassified
See 1 more Smart Citation
“…Many efforts have been made in this area to achieve the optimum recognition rate by identifying the most suitable shape features and classifiers. To mention a few, segmentation and computing the grain size of ceramics (Arnould et al, 2001), the Fourier descriptors (Persoon & Fu, 1977), determining the average grain size of superalloy micrographs (Benesova et al, 2006), the curvature scale space representation discussed in Abbasi and Mokhtarian (1999), many contour based and region based shape descriptors that are discussed in Jain (1989), Sonka et al (1999), Jamil et al (2006), Russ (2007), Sarfraz and Ridha (2007), and Pattan et al (2009, 2010 b ) and moment invariants (Chen et al, 2005; Pattan et al, 2009).…”
Section: Introductionmentioning
confidence: 99%
“…Further, there are many classifiers in practice. The neural network based classifiers (Bhoyar & Kakde, 2005; Pattan et al, 2010 a , 2010 b ), K-NN and fuzzy rule based classifiers (Mamdani & Assilian, 1975; Kulkarni et al, 1999; Mehta et al, 2003; Li et al, 2007; Pattan et al, 2009) are employed widely by many authors. With this background and motivation, we propose a novel method for automatic fuzzy rule based classification and quantification of graphite inclusions in microstructure digital images of cast iron using geometric shape features that characterize the shape of graphite inclusions.…”
Section: Introductionmentioning
confidence: 99%