Constraint satisfaction problems (CSPs) for first-order reducts of finitely bounded homogeneous structures form a large class of computational problems that might exhibit a complexity dichotomy, P versus NP-complete. A powerful method to obtain polynomial-time tractability results for such CSPs is a certain reduction to polynomial-time tractable finite-domain CSPs defined over
k
-types, for a sufficiently large
k
. We give sufficient conditions when this method can be applied and apply these conditions to obtain a new complexity dichotomy for CSPs of first-order expansions of the basic relations of the well-studied spatial reasoning formalism RCC5. We also classify which of these CSPs can be expressed in Datalog. Our method relies on Ramsey theory; we prove that RCC5 has a Ramsey order expansion.