2021
DOI: 10.31436/iiumej.v22i2.1752
|View full text |Cite
|
Sign up to set email alerts
|

Classification of Chest Radiographs Using Novel Anomalous Saliency Map and Deep Convolutional Neural Network

Abstract: The rapid advancement in pattern recognition via the deep learning method has made it possible to develop an autonomous medical image classification system. This system has proven robust and accurate in classifying most pathological features found in a medical image, such as airspace opacity, mass, and broken bone. Conventionally, this system takes routine medical images with minimum pre-processing as the model's input; in this research, we investigate if saliency maps can be an alternative model input. Recent… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 29 publications
0
0
0
Order By: Relevance