2017
DOI: 10.1063/1.4978987
|View full text |Cite
|
Sign up to set email alerts
|

Classification of epileptiform and wicket spike of EEG pattern using backpropagation neural network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
2

Year Published

2017
2017
2022
2022

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 10 publications
0
3
0
2
Order By: Relevance
“…Backpropagation Neural Network (BNN) uses an error output to change the weight values that are connected to the neurons in a hidden layer in the reverse direction until the ideal weight values that minimize the function of the network performance are reached [15]. Artificial Neural Network (ANN) is a technique that simulates the functioning of a neuron being widely used in machine training for task execution or decision making based on a classification pattern [16].…”
Section: Results E Discussionmentioning
confidence: 99%
“…Backpropagation Neural Network (BNN) uses an error output to change the weight values that are connected to the neurons in a hidden layer in the reverse direction until the ideal weight values that minimize the function of the network performance are reached [15]. Artificial Neural Network (ANN) is a technique that simulates the functioning of a neuron being widely used in machine training for task execution or decision making based on a classification pattern [16].…”
Section: Results E Discussionmentioning
confidence: 99%
“…Penelitian untuk mengklasifikasikan wicket spikes dengan gelombang epilepsi ini memang masih belum marak dilakukan, namun sangat dibutuhkan oleh dokter pada kehidupan praktis. Pada penelitian sebelumnya yang dilakukan oleh Juni Wijayanti pada tahun 2016 [2], digunakan metode Backpropagation Neural Network untuk melakukan klasifikasi antara Wicket spikes dan sinyal Gelombang Epilepsi melalui sinyal EEG. Pada penelitian tersebut didapatkan recognition rate dengan rata-rata 70%.…”
Section: Pendahuluanunclassified
“…Pada Tabel 3 dapat dilihat detail hasil percobaan dan tingkat keberhasilan yang didapatkan oleh metode yang diusulkan. Hasil recognition rate dari metode yang diusulkan dibandingkan dengan metode yang diusulkan sebelumnya oleh Juni Puspita adalah 76.12% dibandingkan dengan 96% [2] . Dapat dilihat bahwa nilai akurasi yang dihasilkan oleh metode yang diajukan untuk tugas klasifikasi Epileptiform -Wicket spikes menghasilkan hasil yang lebih tinggi dibandingkan dengan penelitian sebelumnya.…”
Section: B Analisis Hasil Classifier Epilleptiform Dan Wicket Spikesunclassified
“…The aim of our study is to differentiate wicket from IEDs using simple mathematics formulas for quantitative pattern recognition. This study uses the feature extraction simulation in Puspita et al (2017bPuspita et al ( , 2017c to measure the variables of the formula, namely amplitude, duration and angles.…”
Section: Introductionmentioning
confidence: 99%