2018 3rd International Conference on Information Technology, Information System and Electrical Engineering (ICITISEE) 2018
DOI: 10.1109/icitisee.2018.8720990
|View full text |Cite
|
Sign up to set email alerts
|

Classification of Indonesian Batik Using Deep Learning Techniques and Data Augmentation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
18
0
3

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 30 publications
(21 citation statements)
references
References 14 publications
0
18
0
3
Order By: Relevance
“…Hal ini akan kurang efektif dalam menjaga kelestarian budaya daerah yang tentunya menjadi identitas dari daerah itu sendiri terhadap kekayaan budaya yang dimiliki. Beberapa penelitian telah dilakukan untuk mengatasi hal tersebut dimana salah satunya adalah mengembangkan sistem yang dapat mengenali atau mengidentifikasi motif batik berbasiskan pengolahan citra digital, seperti yang dilakukan oleh Agastya dkk dan Khasanah dkk yang mengimplementasikan data augmentasi dan algoritma deep learning untuk mengklasifikasikan motif batik Ceplok, Kawung, Lereng, Nitik dan Parang [2], [3]. Dengan metode yang diusulkan Agastya dkk, mampu mendeteksi kelima motif batik tersebut dengan akurasi mencari 90%.…”
Section: Pendahuluanunclassified
“…Hal ini akan kurang efektif dalam menjaga kelestarian budaya daerah yang tentunya menjadi identitas dari daerah itu sendiri terhadap kekayaan budaya yang dimiliki. Beberapa penelitian telah dilakukan untuk mengatasi hal tersebut dimana salah satunya adalah mengembangkan sistem yang dapat mengenali atau mengidentifikasi motif batik berbasiskan pengolahan citra digital, seperti yang dilakukan oleh Agastya dkk dan Khasanah dkk yang mengimplementasikan data augmentasi dan algoritma deep learning untuk mengklasifikasikan motif batik Ceplok, Kawung, Lereng, Nitik dan Parang [2], [3]. Dengan metode yang diusulkan Agastya dkk, mampu mendeteksi kelima motif batik tersebut dengan akurasi mencari 90%.…”
Section: Pendahuluanunclassified
“…Generally, in the image recognition process, the features generated from the feature extraction process are used as input to train prediction models using traditional machine learning algorithms. Although this approach is very popular, with the advent of deep learning, especially with CNN, new classification methods that do not require manual feature extraction are starting to be widely applied to batik classification problems [29]- [34]. However, despite the vast number of studies related to batik, only a few studies have focused on predicting batik-making methods, with others more frequently aimed for batik pattern classification.…”
Section: Bulletin Of Electr Eng and Infmentioning
confidence: 99%
“…The use of deep learning methods has also been widely used using the CNN method [11], [12] dan Fuzzy Neural Network [13]. The use of CNNs with different architectures such as VGG-13 [14], VGG-16 [15]- [17] dan VGG-19 [18] has also been used to automate the batik motifs classification. The studies that many researchers have done give good and bad results.…”
Section: Introductionmentioning
confidence: 99%
“…Gulthom [15] uses CNN with VGG-16 architecture as feature extraction and SoftMax as its classifier with patching method using total data of 2092 images with five classes resulting in an accuracy of 89 % ± 7. Agastya [18] used the Gulthom dataset, which uses CNN with VGG-19 architecture as feature extraction and SoftMax as its classifier. Implementing the same patching method with 900 images with five classes improves accuracy to 89.3 % better than previous research [15] by 0.3 %.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation