Duygu analizi, günümüzde hem bireylerin hem de şirketlerin karar alma süreçlerinde önemli bir rol oynayan, farklı veri kaynaklarından elde edilen bilgileri inceleyerek insan duygularını anlamayı sağlayan bir yöntemdir. Duygu analizi klasik makine öğrenmesi yöntemleriyle gerçekleştirildiğinde, metinlerin duygusal içeriğini anlamak için genellikle belirli özelliklerin elle seçilmesini ve öznitelik mühendisliği gerektirir. Bu yöntemler, duygusal ifadelerin karmaşıklığını ve çok katmanlı yapısını tam olarak yakalayamamakta ve genellikle belirli bağlamlarda başarılı olmaktadırlar. Ancak, büyük dil modelleri, derin öğrenme prensiplerine dayanarak, karmaşık dil yapılarını daha etkili bir şekilde öğrenebilirler. Bu modeller, büyük ölçekteki metin verilerini işleyerek genel dil bilgisiyle donanmışlardır. Dolayısıyla, duygu analizi gibi görevlerde kullanıldıklarında, öznitelik mühendisliği gerektirmeden karmaşık duygusal ifadeleri daha doğru bir şekilde çözebilirler. Çalışmamızda, üç farklı veri seti kullanılarak büyük dil modelleri ve klasik yöntemlerin duygu analizindeki performansları karşılaştırılmıştır. Sonuçlar, büyük dil modellerinin klasik yöntemlere kıyasla daha yüksek doğruluk oranları elde ettiğini, duygu analizi alanında gelecekte daha fazla kullanılacağını ve bu alandaki çalışmalara önemli katkılar sağlayacağını göstermektedir.