Classification of mammograms based on features extraction techniques using support vector machine
Enas Mohammed Hussein Saeed,
Hayder Adnan Saleh,
Enam Azez Khalel
Abstract:Now mammography can be defined as the most reliable method for early breast cancer detection. The main goal of this study is to design a classifier model to help radiologists to provide a second view to diagnose mammograms. In the proposed system medium filter and binary image with a global threshold have been applied for removing the noise and small artifacts in the pre-processing stage. Secondly, in the segmentation phase, a hybrid bounding box and region growing (HBBRG) algorithm are utilizing to remove pec… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.