1992
DOI: 10.1007/bf02101096
|View full text |Cite
|
Sign up to set email alerts
|

Classification of singular Sobolev connections by their holonomy

Abstract: For a connection on a principal SU(2) bundle over a base space with a codimension two singular set, a limit holonomy condition is stated. In dimension four, finite action implies that the condition is satisfied and an a priori estimate holds which classifies the singularity in terms of holonomy. If there is no holonomy, then a codimension two removable singularity theorem is obtained.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
35
0
2

Year Published

1992
1992
2005
2005

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 42 publications
(38 citation statements)
references
References 15 publications
1
35
0
2
Order By: Relevance
“…Let Ω = B * = B\{0} be the punctured disk. We introduce the holonomy (see [18]) of an SU(N +1) connection α on the bundle Ω × C N +1 → Ω along around 0. Let (r, θ) be the polar coordinates.…”
Section: Geometric Interpretationsmentioning
confidence: 99%
“…Let Ω = B * = B\{0} be the punctured disk. We introduce the holonomy (see [18]) of an SU(N +1) connection α on the bundle Ω × C N +1 → Ω along around 0. Let (r, θ) be the polar coordinates.…”
Section: Geometric Interpretationsmentioning
confidence: 99%
“…On a un fibre holomorphe hermitien E = C" x (X-D) dont la connexion de Chern possede une courbure L p (cela n'est pas change par le fait qu'on a pris la metrique standard). En utilisant le theoreme de Sibner et Sibner [12,11], on deduit qu'il y a une holonomie limite autour du diviseur exp (-Inia.) = exp ou Ton peut choisir les (a 4 ) de sorte que 0 ^ <x x ^ ... ^ a n < 1.…”
Section: Prolongement Parabolique D'un Fibre Holomorpheunclassified
“…Conversely any connection on/~ with holonomy 1/2 can be pulled back to a connection on EIx\B with holonomy 0, which can be extended smoothly crossing B according to Sibner and Sibner [21]. Thus the map # is surjective.…”
Section: Recall M-= I_[tp]mp Where [Pt] = [P2] If and Only If Pt = -mentioning
confidence: 99%