2000
DOI: 10.1016/s0378-3758(99)00173-1
|View full text |Cite
|
Sign up to set email alerts
|

Classification of two-level factorial fractions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
82
0

Year Published

2000
2000
2016
2016

Publication Types

Select...
5
3
1

Relationship

4
5

Authors

Journals

citations
Cited by 82 publications
(83 citation statements)
references
References 16 publications
1
82
0
Order By: Relevance
“…The following proposition extends a result presented in Fontana et al (2000) for the two level case.…”
Section: Remarkssupporting
confidence: 86%
“…The following proposition extends a result presented in Fontana et al (2000) for the two level case.…”
Section: Remarkssupporting
confidence: 86%
“…An indicator polynomial function is associated with a fraction with no replications. This approach was developed in Fontana et al (1996), Fontana et al (2000), Ye (2003) for 2-level design and generalized in Ye (2004), Pistone and Rogantin (2006).…”
Section: Introductionmentioning
confidence: 99%
“…The interested reader can find further information, including the proofs of the propositions in Fontana (2013) itself and in Fontana et al (2000), Pistone and Rogantin (2008), Fontana and Pistone (2010a) and Fontana and Pistone (2010b).…”
Section: Algebraic Generation Of Oasmentioning
confidence: 99%
“…This theory puts neither a restriction on the number of levels of each factor nor on the orthogonality constraints. It also makes use of commutative algebra (see Pistone and Wynn 1996), and generalizes the approach to two-level designs as discussed in Fontana, Pistone, and Rogantin (2000). The definition of strata provided in Section 2 makes it possible to transform each OFFD into a solution of a homogeneous system of linear equations where the unknowns are positive integers.…”
Section: Introductionmentioning
confidence: 99%