Classification of Urban Surface Elements by Combining Multisource Data and Ontology
Ling Zhu,
Yuzhen Lu,
Yewen Fan
Abstract:The rapid pace of urbanization and increasing demands for urban functionalities have led to diversification and complexity in the types of urban surface elements. The conventional approach of relying solely on remote sensing imagery for urban surface element extraction faces emerging challenges. Data-driven techniques, including deep learning and machine learning, necessitate a substantial number of annotated samples as prerequisites. In response, our study proposes a knowledge-driven approach that integrates … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.