Visible imaging is a fast, cheap, and accurate technique in the assessment of food quality and safety. The technique was used in the present research to detect sea foam adulterant levels in black and red peppers. The fraud levels included 0, 5, 15, 30, and 50%. Sample preparation, image acquisition and preprocessing, and feature engineering (feature extraction, selection, and classification) were the conducted steps in the present research. The efficient features were classified using artificial neural networks and support vector machine methods. The classifiers were evaluated using the specificity, sensitivity, precision, and accuracy metrics. The artificial neural networks had better results than the support vector machine method for the classification of different adulterant levels in black pepper with the metrics’ values of 98.89, 95.67, 95.56, and 98.22%, respectively. Reversely, the support vector machine method had higher metrics’ values (99.46, 98.00, 97.78, and 99.11%, respectively) for red pepper. The results showed the ability of visible imaging and machine learning methods to detect fraud levels in black and red pepper.