1996
DOI: 10.1080/01431169608949069
|View full text |Cite
|
Sign up to set email alerts
|

Classification trees: an alternative to traditional land cover classifiers

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
168
0
4

Year Published

2000
2000
2017
2017

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 372 publications
(173 citation statements)
references
References 5 publications
1
168
0
4
Order By: Relevance
“…Tomando como base os pensamentos de [Hansen et al,1996], [Frield; Brodley, 1997], optou-se por trabalhar com árvores de decisão por sua classificação ser mais objetiva, prover fácil interpretação, bem como ser computacionalmente eficiente. Além disso, [Chikalov, 2011], discorre que as árvores oferecem meios que direcionam ao conhecimento proposicional, a fim de auxiliar no processo de tomada de decisão e classificação preditiva de objetos, tais como o desempenho do aluno no AVA.…”
Section: Introductionunclassified
“…Tomando como base os pensamentos de [Hansen et al,1996], [Frield; Brodley, 1997], optou-se por trabalhar com árvores de decisão por sua classificação ser mais objetiva, prover fácil interpretação, bem como ser computacionalmente eficiente. Além disso, [Chikalov, 2011], discorre que as árvores oferecem meios que direcionam ao conhecimento proposicional, a fim de auxiliar no processo de tomada de decisão e classificação preditiva de objetos, tais como o desempenho do aluno no AVA.…”
Section: Introductionunclassified
“…The population is initialized randomly, using the VDs of each feature (12) as the random number distribution. Exceptionally, if for some chromosome the best VD is higher that 0.8, we inactivate all other features, leaving only one variable active.…”
Section: Feature Selectionmentioning
confidence: 99%
“…Apart from the accuracy of the resulting thematic map, the remote sensing research community has recently focused on the interpretability of the considered classification model. Towards this direction, rule-based classifiers 11 and decision trees 12,13 have been considered. Such models provide a better understating of the underlying physical relations of the classification problem at hand, which is useful from an operational remote sensing perspective, especially for hyperspectral imagery, where prior knowledge is rather limited.…”
Section: Introductionmentioning
confidence: 99%
“…Non-parametric tree-based classifiers are gaining consideration in remote sensing studies for their robust predictive capacity and their ability to integrate large multidimensional datasets that have multicollinearity amongst input covariates (Hansen, Dubayah and DeFries 1996). Two such methods are random forests and conditional inference trees (CTree) (Breiman 2001, Hothorn, Hornik andZeileis 2006).…”
Section: Tree-based Classifiersmentioning
confidence: 99%