Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In computer vision, ethnicity classification tasks utilize images containing human faces to extract ethnicity labels. Ethnicity is one of the soft biometric feature categories useful in data analysis for commercial, public, and health sectors. Ethnicity classification begins with face detection as a preprocessing process to determine a human’s presence; then, the feature representation is extracted from the isolated facial image to predict the ethnicity class. This study utilized four handcrafted features (multi-local binary pattern (MLBP), histogram of gradient (HOG), color histogram, and speeded-up-robust-features-based (SURF-based)) as the basis for the generation of a compact-fusion feature. The compact-fusion framework involves optimal feature selection, compact feature extraction, and compact-fusion feature representation. The final feature representation was trained and tested with the SVM One Versus All classifier for ethnicity classification. When it was evaluated in two large datasets, UTKFace and Fair Face, the proposed framework achieved accuracy levels of 89.14%, 82.19%, and 73.87%, respectively, for the UTKFace dataset with four or five classes and the Fair Face dataset with four classes. Furthermore, the compact-fusion feature with a small number of features at 4790, constructed based on conventional handcrafted features, achieved competitive results compared with state-of-the-art methods using a deep-learning-based approach.
In computer vision, ethnicity classification tasks utilize images containing human faces to extract ethnicity labels. Ethnicity is one of the soft biometric feature categories useful in data analysis for commercial, public, and health sectors. Ethnicity classification begins with face detection as a preprocessing process to determine a human’s presence; then, the feature representation is extracted from the isolated facial image to predict the ethnicity class. This study utilized four handcrafted features (multi-local binary pattern (MLBP), histogram of gradient (HOG), color histogram, and speeded-up-robust-features-based (SURF-based)) as the basis for the generation of a compact-fusion feature. The compact-fusion framework involves optimal feature selection, compact feature extraction, and compact-fusion feature representation. The final feature representation was trained and tested with the SVM One Versus All classifier for ethnicity classification. When it was evaluated in two large datasets, UTKFace and Fair Face, the proposed framework achieved accuracy levels of 89.14%, 82.19%, and 73.87%, respectively, for the UTKFace dataset with four or five classes and the Fair Face dataset with four classes. Furthermore, the compact-fusion feature with a small number of features at 4790, constructed based on conventional handcrafted features, achieved competitive results compared with state-of-the-art methods using a deep-learning-based approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.