2021
DOI: 10.21203/rs.3.rs-1122320/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Classifying Grains Using Behaviour-Informed Machine Learning

Abstract: Sorting granular materials such as ores, coffee beans, cereals, gravels and pills is essential forapplications in mineral processing, agriculture and waste recycling. Existing sorting methods are based on the detection of contrast in grain properties including size, colour, density and chemical composition. However, many grain properties cannot be directly detected in-situ, which significantly impairs sorting efficacy. We show here that a simple neural network can infer contrast in a wide range of grain proper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?