“…Different numbers of cry classes were considered according to the clinical target: two classes (normal vs abnormal (Orozco-García and Reyes-García, 2003;Ortiz et al, 2004;Lederman et al, 2008;Hariharan et al, 2011;Rosales-Pérez et al, 2015) or preterm vs fullterm (Orlandi et al, , 2016), three classes (normal, hypo acoustic and asphyxia (Reyes- Suaste-Rivas et al, 2004;Galaviz and García, 2005;Reyes-Galaviz et al, 2005;Barajas-Montiel and Reyes-García, 2006), hunger, pain and sleep (Chang and Li, 2016) or hunger, pain and no-pain-no-hunger (Barajas-Montiel and Reyes-García, 2006)) and five classes (pain, asphyxia, hunger, deaf and normal (Wahid et al, 2016)). A wide variety of machine learning approaches has been evaluated, regrouping classical methods such as SVM (Barajas-Montiel and Reyes-García, 2006;Orlandi et al, 2016), KNN (Rosales-Pérez et al, 2015), Random Forest (RF) (Rosales-Pérez et al, 2015;Orlandi et al, 2015Orlandi et al, , 2016, HMM (Lederman et al, 2008) or Neural Networks (Schönweiler et al, 1996;Orozco-García and Reyes-García, 2003;Suaste-Rivas et al, 2004;Ortiz et al, 2004;Reyes-Galaviz et al, 2004Galaviz and García, 2005;Hariharan et al, 2011;Wahid et al, 2016). Classification results were efficient since some studies reached results above 95% (Orozco-García and Reyes-García, 2003;Reyes-Galaviz et al, 2004Galaviz and García, 2005;Barajas-Montiel and Reyes-García, 2006;Hariharan et al, 2011).…”