Calcium (Ca2+) is an important mediator of multicellular homeostasis and is involved in several diseases. The interplay among the kidney, bone, intestine, and parathyroid gland in Ca2+ homeostasis is strictly modulated by numerous hormones and signaling pathways. The calcium-sensing receptor (CaSR) is a G protein–coupled receptor, that is expressed in calcitropic tissues such as the parathyroid gland and the kidney, plays a pivotal role in Ca2+ regulation. CaSR is important for renal Ca2+, as a mutation in this receptor leads to hypercalciuria and calcium nephrolithiasis. In addition, CaSR is also widely expressed in the vascular system, including vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) and participates in the process of vascular calcification. Aberrant Ca2+ sensing by the kidney and VSMCs, owing to altered CaSR expression or function, is associated with the formation of nephrolithiasis and vascular calcification. Based on emerging epidemiological evidence, patients with nephrolithiasis have a higher risk of vascular calcification, but the exact mechanism linking the two conditions is unclear. However, a dysregulation in Ca2+ homeostasis and dysfunction in CaSR might be the connection between the two. This review summarizes renal calcium handling and calcium signaling in the vascular system, with a special focus on the link between nephrolithiasis and vascular calcification.