Surfactant is extensively used as chemicals during chemical enhanced oil recovery (CEOR) process. Effectiveness of surfactant CEOR process depends on several parameters like formation of micro emulsion, ultra-low interfacial tension (IFT) and adsorption of surfactant. First two parameters enhance the effectiveness while the last parameter reduces the effectiveness. Micro emulsions are highly desirable for CEOR due to its low interfacial tension (IFT) value and higher viscosity. In this research the size of the emulsions were studied with particle size analyzer to study the liquid-liquid absorption process and the entrapment of oil drops inside surfactant drop. Initially, the average surfactant drop size was found to be 100 nm, after mixing the surfactant slug with reservoir crude, the size was increase up to 10 times. It signifies the formation of micro emulsion between surfactant and oil. Another attempt was done in this research to study the adsorption mechanism of surfactant on reservoir rock. The process of adsorption was studied by Langmuir and Freundlich isotherm to understand the adsorption phenomena. In this study, it was found that the adsorption follows Freundlich isotherm and the adsorption phenomena was chemical for surfactant flooding process. In chemical adsorption phenomena, the rate of adsorption is high because, surfactant molecules are adsorbed layer after layer by the rock surface. Use of alkali along with surfactant reduces adsorption of surfactant since, alkali blocked the active clay sites before interacting with surfactant and hence the adsorption isotherm was found to be Langmuir and phenomena was physical adsorption.