The next-generation of artificial intelligence technology has contributed significantly to the development of medical intelligence. However, the widespread use of deep neural networks (DNNs) has also brought about serious security threats. In this paper, we present an adversarial attack approach for deep learning-based image segmentation models in the field of medical image analysis. In our solutions, we propose a novel adversarial attack method, which is designed to exploit the DNNs' generic down-sampling operation to ensure the effectiveness, stealthiness, and transferability of the attack. We perform the attack on two State-Of-The-Art (SOTA) models, DDANet and CaraNet in a general medical image dataset Kvasir-SEG, and a comprehensive evaluation shows that our attack is effective stealthy, and transferrable.