A federated cloud-based multi-platform Power System is presented to meet the growing challenges confronting power system operators. It uses a federated architecture to provide a group sourced increase in cyber security, in reducing the need for computing resource overcapacity, for sharing computing and power resources during emergencies, for minimizing energy costs, and for sharing information on threats and incident responses. In the face of nation-state and organized crime complex, multi-technology, coordinated attacks, a single organization stands an ever reducing chance of remaining safe. The proposed federated cloud preserves the economic efficiency advantages of marketplace of non-monopolistic organizations innovating to obtain competitive advantage with shared preparation, resources, information, and resiliency enabled by individual Power System cloud-based computing creating a federated System. The paper applies earlier advances. This paper combines the results previously published in different publications and applies them to a single paradigmatic example of a power system consisting of a number of individual asset owners. It includes the architecture, model of energy, and resource sharing as well as a novel, self-learning, semantic-less breach detection system for detecting anomalous behavior in resource usage across the power system participants. The paper extends previous work published about federated cloud. The simulations results provided to demonstrate the usefulness of the proposed system.