2021
DOI: 10.3847/1538-3881/ac1348
|View full text |Cite
|
Sign up to set email alerts
|

Cleaning Images with Gaussian Process Regression

Abstract: Many approaches to astronomical data reduction and analysis cannot tolerate missing data: corrupted pixels must first have their values imputed. This paper presents astrofix, a robust and flexible image imputation algorithm based on Gaussian process regression. Through an optimization process, astrofix chooses and applies a different interpolation kernel to each image, using a training set extracted automatically from that image. It naturally handles clusters of bad pixels and image edges and adapts to various… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
5
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 23 publications
0
5
0
Order By: Relevance
“…In astronomy, GPR has already found numerous applications, including foreground removal (Mertens et al 2018;Ghosh et al 2020;Kern & Liu 2021;Soares et al 2021), foreground modeling by point-source interpolation (Pinter et al 2018), interpolating galactic-scale fields (Platen et al 2011;Yu et al 2017;Leike & Enßlin 2019;Williams et al 2022), cleaning/ interpolating missing data (Czekala et al 2015;Baghi et al 2016;Ndiritu et al 2021;Zhang & Brandt 2021), predicting photometric redshifts (Way et al 2009;Almosallam et al 2016), light-curve analysis (Evans et al 2015;Littlefair et al 2017;McAllister et al 2017;Angus et al 2018), radial velocity analysis (Haywood et al 2014;Barclay et al 2015;Rajpaul et al 2015), removing instrumental systematics (Gibson et al 2012;Junklewitz et al 2016), interpolating atmospheric turbulence to improve astrometry (Fortino et al 2021;Léget et al 2021), modeling PSF variations (Gentile et al 2013), or predicting object properties (Bu et al 2020;Fielder et al 2021).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…In astronomy, GPR has already found numerous applications, including foreground removal (Mertens et al 2018;Ghosh et al 2020;Kern & Liu 2021;Soares et al 2021), foreground modeling by point-source interpolation (Pinter et al 2018), interpolating galactic-scale fields (Platen et al 2011;Yu et al 2017;Leike & Enßlin 2019;Williams et al 2022), cleaning/ interpolating missing data (Czekala et al 2015;Baghi et al 2016;Ndiritu et al 2021;Zhang & Brandt 2021), predicting photometric redshifts (Way et al 2009;Almosallam et al 2016), light-curve analysis (Evans et al 2015;Littlefair et al 2017;McAllister et al 2017;Angus et al 2018), radial velocity analysis (Haywood et al 2014;Barclay et al 2015;Rajpaul et al 2015), removing instrumental systematics (Gibson et al 2012;Junklewitz et al 2016), interpolating atmospheric turbulence to improve astrometry (Fortino et al 2021;Léget et al 2021), modeling PSF variations (Gentile et al 2013), or predicting object properties (Bu et al 2020;Fielder et al 2021).…”
Section: Introductionmentioning
confidence: 99%
“…The work of Fortino et al (2021) notably improves astrometry (measurements of the position of stars) on images from the Dark Energy Camera (DECam), which is the same camera used for validating our photometric model in Section 5. The extraction of clean foreground models by interpolating to remove point sources or bad pixels shown in Pinter et al (2018) and Zhang & Brandt (2021) serve as a proof of concept for this work. We further derive the correction to and uncertainties on the fluxes of those point sources as a result of the background model.…”
Section: Introductionmentioning
confidence: 99%
“…Meanwhile, machine learning has also been applied to the field of nuclear physics [45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60]. As one of the machine learning algorithms, the Gaussian process has provided new ideas for the studies of many important physical problems in recent years [61][62][63][64][65][66]. The Gaussian process is a popular machine learning algorithm because it can provide error bars for the predictive values.…”
Section: Introductionmentioning
confidence: 99%
“…All that can be done is to identify the cosmic ray by the spatial structure of the counts on the array (van Dokkum 2001;Pych 2004). The data must then be discarded or, if necessary, interpolated over (Zhang & Bloom 2020;Zhang & Brandt 2021).…”
Section: Introductionmentioning
confidence: 99%