Gametes constitute a critical stage of the plant life cycle, during which the genome undergoes reprogramming in preparation for embryogenesis. Here we characterized the small RNA transcriptomes of egg cells and sperm cells from rice to elucidate genome-wide distributions of 24nt siRNAs, which are a hallmark of RNA-directed DNA methylation (RdDM) in plants and are typically concentrated at boundaries of heterochromatin. We found that 24nt siRNAs were depleted from heterochromatin boundaries in both gametes, reminiscent of siRNA patterns in DDM1-type nucleosome remodeler mutants. In sperm, 24nt siRNAs were spread across broad heterochromatic regions, while in eggs, 24nt siRNAs were concentrated at a smaller number of heterochromatic loci throughout the genome, which were shared with vegetative tissues and sperm. In both gametes, patterns of CHH methylation, typically a strong indicator of RdDM, were similar to vegetative tissues, although lower in magnitude. These findings indicate that the small RNA transcriptome undergoes large-scale re-programming in both male and female gametes, which is not correlated with recruitment of DNA methyltransferases in gametes and suggestive of unexplored regulatory activities of gamete small RNAs in seeds after fertilization.