Summary:The ultimate goal for Huntington's disease (HD) therapeutics is to develop disease-modifying neuroprotective therapies that can delay or prevent illness in those who are at genetic risk and can slow progression in those who are affected clinically. Neuroprotection is the preservation of neuronal structure, function, and viability, and neuroprotective therapy is thus targeted at the underlying pathology of HD, rather than at its specific symptoms. Preclinical target discovery research in HD is identifying numerous distinct targets, along with options for modulating them, with some proceeding into large-scale efficacy studies in early symptomatic HD subjects. The first pilot studies of neuroprotective compounds in premanifest HD are also soon to begin. This review discusses the opportunities for neuroprotection in HD, clinical methodology in premanifest and manifest HD, the clinical assessment of neuroprotection, molecular targets and therapeutic leads, and the current state of clinical development.